Lower Granite Lock and Dam Juvenile Bypass System (JBS) Primary & Secondary Dewatering Design and

Construction

2019 Pacific NW Fish Screening and Passage Workshop

September 19, 2019

Jon Renholds

Hydraulic Engineer & Technical Lead

US Army Corps of Engineers
BUILDING STRONG®

Outline

- Background
 - ▶ Previous Lower Granite JBS
 - ▶ Overall Upgrade
- Design
 - ► Focus on Primary Dewatering Screen
 - · Sizing, baffling, water surface control, cleaning
 - Secondary Dewatering Screen also discussed
- Construction
 - ► Issues & resolutions during construction
- Post Construction Testing specific to screens
 - ► Mark Morris to cover

Lower Granite Dam

Existing System

▶ 10" orifices to downwell, to 1700 ft of pressure pipe, to upwell, to undersized dewatering screen

Purpose of Project

- Improve Survival
 - New primary bypass outfall for return to river fish easier and in better location in the river

▶ Reduce Delay

- 10" orifices replaced by 14" orifices
- 2013 study should ½ of the gatewell residence time for 14" compared to 10" orifice

Reduce Injury

Open channel transport with correctly sized dewatering & automatic cleaning system

Overall JBS Upgrade

Overall JBS Upgrade

Secondary Dewatering

Primary Dewatering (PDS)

Large structure with 365 cfs dewatering capacity

PDS similar design to Previous Designs

Lower Monumental & Little Goose PDS similar

Sizing of PDS

- ▶ 14" orifices double the flow ~ 180 380 cfs into PDS and 25 – 40 cfs out to flume
- ▶ Meet NMFS criteria for active cleaned screens 0.4 fps approach implies at least 915 ft² of screen.
- ► Effective screen area 840 ft² floor screen and 100 ft² side screen
- Profile bar used for all screen in PDS

Design Velocities through PDS

0.00

- ▶ Due to shallow angle inclined screen discussed with NMFS to have a target PDS velocity of 3-5 fps despite transport between 6-12 fps
- ► Attempted to maintain near constant velocity and not violate 0.2 fps/ft acceleration criteria over range inflow conditions

- Baffling
 - ► Baffles boards used to break up water withdraws under screens
 - ▶ No baffling under profile bar screens
 - ► Approach similar to Lower Monumental and Little Goose

Primary Dewatering

Use of Screened Water

- Water pulled through screen supplies water supply for JFF
- ► Water not used for water supply supplements adult ladder attraction water

Primary Dewatering – Use of Screened Water

- Water Surface Control
 - ► Flow from CC can vary depending on forebay & orifices used
 - Typically ~300 cfs but designed for 180-380 cfs
 - Also options given to operator to select between 25 40 cfs flow out
 - ▶ Weirs move automatically based on 2 water surface levels
 - Each Weir group can be adjusted to different level to balance screen
 - ▶ Downstream water level can be correlated to flow out

Primary Dewatering

PDS Cleaning

3 Floor Screen Brushes on chains

- ▶ 5 Floor Screen Bubblers with solenoids
- ▶ 2 Side Screen Brushes on tracks
- Manual or Auto by time and/or headloss

Secondary Dewatering (SDW)

- SDW just prior to existing facility
 - Original design had only 15 cfs being pulled out at porosity control prior to existing separator
 - ► Therefore need to pull out up to 22 cfs if going to existing facility
 - Size to meet 0.4 fps approach
 - Uses bubblers for cleaning
 - Maintains steep slope to maintain supercritical flow

- PDS was in difficult location to install support piers
 - ► ISSUE: The larger drilled shaft equipment could not access the areas needed for install piers for PDS
 - ► RESOLUTION: The steep hill had to be benched with some cut and mostly fill.

Construction access for PDS was limited

- PDS water supply crushed by vacuum
 - ► ISSUE: Contractor had air release/vacuum breaker isolated during pressure testing and then emptied pipe.
 - RESOLUTION: Contractor took hit and refabricated pipe and recovered lost schedule.

- PDS & SDW gaps between screens
 - ▶ ISSUE: Gaps present potential injury issue especially in SDW.
 - ► RESOLUTION: Used caulk for PDS & UHMW for SDW to fill gaps.

NOTOR OPERATOR

PDS water control unstable

- ► ISSUE: Initial control used a different downstream WSE for the weirs behind the side screens (Group D). Also frequency of weir adjustment was too quick to get response from water surface.
- ► RESOLUTION: Initially used Weir Group D in manual & then made software change to correlate with other weir groups. Also made adjustment frequency settable by operator (60 sec worked well (initial 15 sec).

Floor Screen Brush bent

- ► ISSUE: Floor brush got stuck on debris and was ran backwards to clear it. However pipe between chains bent.
- ► RESOLUTION: Replace connecting pipe with larger pipe for all 3 brushes. Limit brush head movement so doesn't jam if need to run backwards.

- Chain broke on Side Screen Cleaners
 - ► ISSUE: Connection of chain broke when changing directions.
 - ▶ RESOLUTION: Improved connection & added pause to direction changes in programming.

Questions?

Mark Morris presenting Testing Next

Jon Renholds

Contact Info: Jon.F.Renholds@usace.army.mil

Closer Figure of PDS

Transport Channel & PDS

PRIMARY DEWATERING

